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I.ABSTRACT

Cross sections for positronium formation by capture

fronl the negative hydrogen ion are given. Orthogonal-

ization corrections to the Coulomb (First) Born Approx-
imation (CBA) differential and total cross sections are

calculated using approximate H- wave functions of both
L6wdin 1 and Chandrasekhar. 2

The present calculation of the CBA cross sections

using the post interaction for LSwdin's wave function

(LCBAPS) disagree with the calculation of Choudhury,
Mukherjee, and Sural (CMS), whereas our results using

tile prior interaction agree. Thus, where CMS found an or-
der of magnitude post-prior discrepancy in the differential

cross sections except at forward angles, and a markedly

different shape to the minima, the present post &lid prior
results differ by 1% to 10% at 100 eV, and the lninima

have the same shape and occur within one degree of each
other. Chandrasekhar's "open-shell"wave functiou, which

is superior to LSwdin's in bound-state problems since it

gives a negative binding energy, gives post and prior cross

sections that are ahnost indistinguishable at this energy

and 1/2 to 2/3 as large as the LCBA.

Various methods of orthogonalizing the unbound pro-
jectile to the possible bound states are considered. It is

found that treating the atomic nuclei as if they were iso-

topic spin projections 4 of a single type of "nucleon" gives

cross sections that are an improvement over the CBA.

II. INTRODUCTION

Reliable cross sections for the various positronium (Ps)
formation processes are essential for an accurate calcula-
tion of the width of the .511 MeV annihilation line that

has been observed ill the region of the galactic center, 5 in

solar flares, ° and in planetary nebulae/In the transition

regions of planetary nebulae the concentration of

tile negative hydrogen ion s should be large enough for the
reaction

e + + tt- ---, Ps(n 0 + H(ls) (1)

to make an important contribution to the line width. 9 Fur-

thermore, because this reaction is exothermic, it appears

to be the dominant mechanism for positronium forma-

tion at energies below the 6.8 eV positron kinetic energy

threshold for electron capture from neutral hydrogen even
in regions where the H- density is low.

The present calculation relies on the exact treatment

of the three species of bound states inherent in Fock-Tani

representation. Also included is the fnrther presumption, 4
which produced remarkable agreement between the or-

thogonalized first order calculation 11 of charge transfer

from hydrogen and the (presumably exact) variational

result, t-_ of treating the proton and positron as isospin-

like projections (of different mass) of a single species of
"nucleon."

III. ORTHOGONALIZATION

In scattering processes involving bound states, one nrust
subtract the projection of the translational states of free

particles onto the corresponding bound states if tile con-

tribution of these particles to the amplitude is not to
be counted twice. Fock-Tani representation 13 has been a

powerful tool for generating these orthogonalization cor-
rections. In this representation the reactants, interme-

diate states, and products are treated symmetrically,and

composites are treated exactly within a single second-

quantized Hamiltonian. Unbound particles are ezactly

orthogonal to bound states, and all interactions contain

tile proper orthogonalization subractions so that free par-

ticles do not have sufficient energy to bind (this binding
energy is accounted for in tile asymptotic Hamiltonian),

and assuring that there is no double counting.

Because the Lippmann-Schwinger series for the Fock-
Tani T-matrix contains higher order contributions at each
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order than does tile standard Born series, one has the

hope of improved results at each order. Ojha et al. 14 have

calculated the first-order Fock-Tani cross sections for the

reaction

H + + H _ H + H + (2)

and have obtained good agreement with experiment 1_ for

differential angles within 1 mrad of the forward direction

at 25, 60, and 125 keV and for total cross sections at en-

ergies greater than 10 keV. They noted that the orthog-

onalization correction substantially cancels the internu-

clear potential. Straton r6 has shown that excluding these

p-p terms yields Fock-Tani cross sections that are 18%

smaller than when these terms are included. Ill contrast,

the Brinkman-Kramers result, lr which excludes the p-p

term, is 1000% larger than the first Born totM cross sec-

tion that includes this term. ]s Thus tile Fock-Tani Hamil-

touian produces substantial agreement at first order be-

tween experiment and Wick's observation TM that the in-

ternuclear potential should play a negligible role ill exact

calculations of th!s process.

Finally, it may be seen that the first-order Fock-Tani

differential cross section is virtually identical to that of the

second-order boundary-corrected Born approximation 19

(B2B) at 125 keV. This correspondence both affirms the
alSproptiateness of testing the lowest-order F0ck-Tani the-

dry in problems in which generic first-order theories would

not be expected to be reliable, and requires a deeper study

of the question of why it should do so well. I1] particu-

lar, is there a fundamental relation between the orthogo-

ualization process that produces free-particle (continuum)

states by subtracting off their Coulomb projections onto

the bound states, and cancels the internuclear interaction

ill the scattering region, and tile Coulomb boundary cor-

rection process that gives the correct asymptotic states?

IV. ISO-ORTHOGONALIZATION

The obvious region in which a first-order theory nfight

not be expected to be reliable is at low energies. Straton 16

has calculated the Fock-Tani total cross section for the

reaction

e + + n -_ Ps(ls) + H(ls) (3)

and obtained a result that was larger than the first Born

approximation (FBA), whereas the (presumably exact)

variational result of Brown and Hulnberston 12 was smaller

than the FBA.

This failure was due to an anomaly of tile product form

of tile Fock-Taui transformation, which does not produce

orthogonalizations with respect to all species of bound

states. This was immaterial in the reaction (2) since the

initial and final bound-state species were identical.

Straton and Girardeau 4 were :able to generalize the

Fock-Tani transformation on the two-nucleon, one-electron

Hilbert space to produce a T-nlatrix for either (2) or (3)

that was post-prior symmetrical. This was accomplished

by thinking of the two atomic nuclei as isospin-like pro-

jections of a single species of "nucleon," just as in nuclear

physics it is useful to think of the proton and the neutron

as isospin projections of a single species of nucleon. The

consequence of this way of viewing the system is an up-

leveling of the nucleon-exchange contribution to the scat-

tering (elastic and inelastic) amplitude, as in Fig. 1,

y,+

FIG, 1. Proton exchange terms in the Coulomb and

orthogonalization interactions in proton-hydrogen scattering.

The solid lines are proton propagators, the dashed line is the

electron propagator, and tile doubled line is the hydrogen atom

(composite elementary particle) propagator. Time flows right

to left so that the first term represents breakup of a bound-

state with quantum numbers v followed by formation of bound-

state # due to interaction with the exchanged proton. The

last two terms contain the post and prior orthogonalization

projectors 2)(2.

to a reactive amplitude. Since exchange essentially

amounts to a reactive process, it is not surprising tllat

Fig. 1 may be promoted to a reactive matrix element by

promoting all "effective" difference between incoming al)d

outgoing free particles to a true difference through the use

of an isotopic spin formalism.

Girardeau and Lo n applied this iso-orthogonalized ma-

trix element to reaction (3) with superb agreement with

the variational result of Brown and Humberston x2, repro-
duced ill Table I.

Note that Fig. 1 is the average of the post and prior

interaction amplitudes, but that neither the post or prior

Fock-Tani probabilities, nor ttle average of the probabili-

ties without interference gives a good result in Table I.
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V. THE FOCK-TANI HAMILTONIAN FOR

TWO NUCLEONS AND TWO ELECTRONS

One may develop a Fock-Tani Hamiltonian for a system

that contains two nucleons and two electrons using the

product form of the transformations that orthogonalize

to the three bound species in (1). By working in a coor-

dinate system in which one atomic nucleus is fixed at the

origin, and therefore ceases to be a dynamic particle, 16 the

unitary operator that transforms the Fock Hamiltonian

into the subspace in which the three bound states may be

treated as elementary particles may be compounded by

the product

0 = r?AO.OE, (4)

where A = Ps, B is the state with two electrons bound to

the origin, and E is the state with one electron bound to

the origin, as in Fig. 2.

y__' (=) (-I)qb (xy)

<:> -.-y -u,(y)
y, Y_

FIG. 2. Diagram correspondences for the positronium

wave function, the states in which two electrons are bound

to the origin, and the state in which one electron is bound to

the origin. The solid lines represent electron propagators, the

dashed line represents a positron propagator, and the nondy-

namical nucleus fixed at the origin is represented by the dotted

line.

Then by interchanging the meanings of the electron and

proton propagators in the Hamiltouian given by Straton

and Girardeau 4, the first and most difficult transforluation

is at hand. Under the second transformation, the electron

propagator transforms as in Fig. 3.

^-'%¢ < 2

FIG. 3. Transformation orthogonalizing the electron prop-

agator to the states in which two electrons are bound to the

origin. The triple line represents the (composite elementary

particle) 2-electron bound state propagator.

Under the third transformation, the electron propagator

transforms as in Fig. 4

-UE y =

FIG. 4. Transformation orthogonalizing the electron prop-

agator to the states in which one electron is bound to the

origin. The double line represents the (composite elementary

particle) 1-electron bound state propagator.

Then the (product form) Fock-Tani Hamiltonian on the

2-nucleon, 2-electron Hilbert space is given in Fig. 5 and

Fig. 6.

A A ,,'%°IA ^

0-1HF U = UEHBU E = HO+ VoI+Vo2+VII+VI2

Ho : ______-.4+ _ +

+

H.C.

FIG. 5. The Fock-Tani Hamiltonian on the 2-nucleon, 2-

electron Hilbert space. All free propagators are integrated over

and all bound state propagators are summed over. The bound

state energy is indicated by the -,-.
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+ _, + H.C.

_ + H.C.+_ + H.C.

FIG. 6. The 2-nucleon, 2-electron Fock-Tani interaction
terms.

The oval in tlie l_,-ts_::_erii{]n Fig. 6, which is tile inter-

action potential for (1), is given explicitly in Fig. 7. The
second oval in Fig. 7 is given by Fig. 8. The first oval in

Fig. 6 is given by the first four tenus of Fig. 8 with the

V' propagator replaced by the dotted lille representing the

nucleon fixed at the origin.
Thus the algebraic translation of Fig. 8 in Fig. 7, af-

ter the asymptotic states select the bound state quantum
numbers from the sums, is4''°

d XdX'dX"(6(X' - X")[V(XX')+ V(X%)]¢,, (Xx)

- 6(X' - X") / dYdg¢'u(t"g)[V(X'Y ) + I/(X'y)]

× a(Yy, x_) + f @¢,; (x'y) V4(X'y)_X(x".u, x_)

+ +
+,,ix.x-,+ + x.,)
× ¢,,(xx')u._(x') (5)

FIG. 7. The last term in 6 in more detail.

y- y'

, ¢

• \/

y

y" y'

y y'

- _y

y' y

y y'

FIG. 8. The second oval in Fig. 7. The zigzag line repre-

sents both the sum of Coulomb interactions and the inertial

potentials I* (sometimes called "mass-polarization" terms) ex-

perienced by all other particles due to the acceletated reference

frame in which one nucleon is constrained to remain at the ori-

gin. Crossed fermion lines yield a factor of-1.

reduction of tile Coulomb terms,Thg analytic " in which

the two electron wave function has been approximated by
LSwdin's wave function 1 (with parameters c_ = .4228, .4 =

.30025,/3 = .9794, and B = 1.0001), Ims l_eeii out-
lined in CMS 3. The derivation for Chandrasekhar's wave
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function2 (with parametersa=.28309,b=1.03925,and
normalizationN=.39513)isidenticalexceptthatonlythe
crosstermsAB arenonzero.

Thereductionofthedirect-orthogonalizationterms,the
thirdandfourthtermsin Fig. 8 is muchmoredifficult
becauseof theextratllree-dimensionalintegral.TheX'

integral may be done directly giving four terms in the

pairings of VvV'v'

Tv ,,v , ,, , : _ r.... , .y , V , T l ''"r 1[.,_..,_.- (- (6)*] _VvV'v'J

-y

where a is the ratio of the nucleon to electron masses

in the final bound state, and the sum is over all possible
final bound states. In positronium this ratio is one so that

only the odd-parity terms in the sum are nonzero, as was

found 1¢ for the orthogonalization corrections in reaction

(3). In the results below, only the 2p contributions are
included since the 3p contributions for the similar terms

in (3) were negligible. The T's are

Ty,a,x 2v_VV'(a + b)aA 3/2

_.v,., : - (2_)%_(,\ + _,)_

× / dxdrds e-*kJ .[s+(,,+¢ )x] u_,.: (r)

× e_p - ,7_b) I s + (,7+ ¢)_ - ,b_ I

[ ,(_+ b) L____]x is+(,7+Ox__b_ i+
t

lit tg _

where ¢ : mv/(m v + m,,),,7 : 1 - i,_ = One, ,\ :
Intrne/(rnt + me) , and X is the Coulomb wave Dnction.

Introducing the Fourier (three dimensional integrM)

representation of the exponential function and the Yukawa
potential allows the r integral to be evaluated. 21 One

may then introduce a (one dimensional integral) Gaus-
sian transform 22 to evaluate the s and x integrals, leaving

a final expression requiring numerical evaluation of a four-

dimensional integral. At low energies and small angles

the (momentum) radiM, 0, ¢, and (gaussian) p integrals

required 32, 16, 24, and 16 Gaussian points, respectively,
which used 11 hours of cpu time per data point on a VAX

750.

The exchange-orthogonalization terms in Fig. 8 involve

a mixing of coordinates, seen in the last three lines of (5),

that further complicates the analytical reduction of these
tenus. The nfinimum number of dimensions to be inte-

grated appears to be five for these tenus, which would
involve a prohibitive amour of time on conventional com-

puters. However, since these terms are exchange correc-
tions to the direct-orthogonalization corrections, they are

expected to be small and will be neglected in what follows.

VI. ISOSPIN SYMMETRY

Because (1) is sinfilar to, and more complicated than,

(3), one would expect that the problems associated with
a Fock-Tani Hamiltonian derived using a product trans-
formation for the one-electron case would also arise in

using a product transformation for the two-electron case.
Indeed, the cancellation of the even-parity orthogonaliza-

tion terms appears in both cases, and if the positron is

replaced by a proton the internuclear C,oulomb term is

cancelled by the corresponding orthogonalization terln/

It is hoped that the ideas behind the correction of these

problems in (3), which lead toexcellent agreement with
the variational result, will likewise give a reliable result

for (1).
Girardeau and Straton m have been able to formally

generalize the Fock-Tani transformation to include any
number of nucleons, electrons, and bound-state species,

but the exacting process of applying Wick's theorem to

produce the Hamiltonian on the 2-nucleon, 2-electron
Hilbert space has not been completed. Until this pro-

cess is completed one must use physical ideas to intuit the
result.

One might look at the amplitude, Fig. 1, for reaction

(3) and postulate that the desired amplitude for (1) should

be the average of the amplitudes derived by the post and
prior product transformations. Indeed the prior product

form corresponding to (4)

is also allowed (though E before A or B is not becanse

its constutuents are a proper subset of the constituents

of both A and B). 23 The amplitude for this transition is

particularly simple because all of the electron-electron in-
teraction energy is included in the bound states and the
internuclear potential does not appear (or one might say

that the Coulomb term is exactly cancelled by the orthog-

onalization term for all masses). It is given in Fig. 9.

FIG. 9. The prior amplitude for (1).

Evaluation of this amplitude follows that of the CBA

closely.
But the fundamental idea that lead to the excellent re-

sults for (3) was not post-prior averaging--that was the

consequence. The fundamental idea was the treatment of

particles of different mass and same charge as if they were

isospin projections of a single species of nucleon. Consider

Fig. 10.
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FIG. 10. Direct and (nucleon) exchange Coulonlb terms for

the electron-nucleon transition amplitude for reaction (1).

jectile is orthogonalized using the average of the direct

projectors onto the two post bound states.

Reverting to the coordinate system in which the proton

is fixed at the origin, one may show that the direct orthog-

onalization to the state ill which one electron is bound to

the origin may be analytically reduced in the same manner

as the CBA.

If one draws tile dectron-nucleon interaction diagrams

corresponding to the direct and (nucleon) exdlange (in a

coordinate system in which all four particles are dynam-

ical), it cat] be see]] that the latter n]ay be transformed

into the former by a vertical stretching process (multiply-

ing by -1 for each fernfion line that is crossed or uncrossed

in the process), so that they represent the same physical

process. The corresponding direct and exchange orthogo-

nalization projector onto the prior bound states are also

equivalent. See Fig. 11.

FIG. 11. Direct and (nucleon) exchange prior orthogonal-

ization corrections for the electron-nucleon transition ampli-

tude for reaction (1).

Thus, isospin symmetry does not imply post-prior sym-

metry in reaction (1).

The corresponding direct and exchange orthogonaliza-

tion projectors onto the upper post bound state are shown

in Fig. 12.

FIG. 12. Direct and (nucleon) exchange corrections orthog-

onalizing the free nucleon with respect to the upper post bound

state, for the electron-nucleon transition amplitude for reaction

(1).

These are topologically different and must be treated as

VII. RESULTS

The differential cross section for reaction (1) is given in

Fig. 13 for a positron energy of 100 eV.
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FIG. 13. Electron capture from H- into the ground state

of positronium. The solid line is the present calculation of

the post CBA using LSwdin's wave function (LCBAPS), the

open circles are the LCBAPS of CMS 3, the dashed lines are,

in order of decreasing length, the prior LCBA (LCBAPR), the

prior direct-orthogonalization result (CDOPR), the CBAPR

using Chandrasekhar's wave function (CCBAPR), and the

CCBAPS. The solid points are the iso-orthogonalization cor-
rection.

Although the present LCBAPR and the calculation of

Choudhury, Mukherjee, and Sural 3 agree, the present cal-

culation of the post CBA cross Sections using the post in-

teraction for LSwdin's wave function 1 (LCBAPS) disagree

with the calculation of CMS. Where they found an order of

mag{li{ude post-prlor discrepancy in the differential cross

two distinct physical processes. Defornfing the latter di- sections except at forward angles, and a markedly_different
..... s]idp_e _ to .......agram so that the post bound state propagators inter: ._ :_ t|ie minima, the presen-t post and prior results

differ by 1% to 10% at 100 eV, and'the minin]a have thechange positions reveals the interpretation of this diagraln

as the direct orthogonalization projector onto the lower same shape and occur within one degree of each other.

post bound state. Thus the prescription for promoting A cross-check of the present analytic result and their re-
stilt (which they kindly sent) produced agreement at thisthe exchange amplitude to a reactive alnplitude, by pro-

rooting the "effective" difference between upper and lower stage, so the disagreen]ent is in the computer codes. Four

nucleons to a trite difference through use of an isotopic independent reprogranunings, two using an alternate re-
duction of the integrals giving a different but equivalentspin formalism, leads to an amplitude in which the pro-
analytical result, have reproduced the present resul{s. Ad-
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ditionally, there is a "phase space" argument in favor of

the present result: that it is less likely that an error would

produce nearly identical post and prior curves if they were
10000.

truly dissimilar titan that all error would produce dissim- u

ilar curves if they were truly nearly identical.

Tile CBA results using Chandrasekhar's "open-shelr' _ looo.(

wave function 2 function gives a binding energy of-.522592 _

atomic units for H-, which is within .4% of tile correct d_
value, but LSwdin's wave fuuction does not give a nega- Ho loo.c

tive binding energy. One would suspect that the former

would also yield better results in a scattering problem. It _ lo.o

may be seen in Fig. 13 that tile post and prior results

are are ahnost indistinguishable for the former. Also the

luagnitude of the CCBA results are 1/2 to 2/3 as large as

tile LCBA results, which is expected to exceed the exact

result.

The differential cross sections at energies .1, .5, and 1.

eV are given ill Fig. 14 and the total cross sections are

given in Table II. The latter was obtained by a simple ex-

tended Silupson's rule from the differential cross sections

so the error may be of order 10%, as seen by comparing

LCBAPR at 100 eV to the result, .255(-1), of CMS. As

noted below, the error due to the approximate H- wave

function is certainly larger.

Note that the CDIOPS and CDOPS results show some

oscillations characteristic of a lack of convergence in tile

energy region around 90 degrees, but are well converged

in at small and large angles, the regions with the greatest

contributions to tile total cross sections. Tile LDIOPS is

smoother because of the averaging inherent ill the larger o.o

nulnber of nouzero ternls ill LSwdin's wave function. It

may be posible to redistribute the nunlber of Gaussian _oooo.

integration points among the four integrals to improve

the convergence in the central region. But the difference
H 1000•_

between tile LDIOPS and CDIOPS results gives a bound _"
on the accuracy of tile approximate wave function that

lead to the CDIOPS result and the oscillations are much _ loox

smaller than this estinlate. _

It may be seen that all orthogonalization corrections d_
1-40 10.C

tend to remove the minimum that appears ill the C]3A _g
results, a minimum that was shown to be spurious ill tile 0:

m

reaction (2). However, the CDOPR and CDOPS cross _ t.o
sections (and the result obtained by averaging these am-

piitudes) are larger than both the CCBAPR and CCBAPS

cross sections. Since the Coulomb Born approximatiou for o.o

the exact H- wave function appears to be larger than the

unitarity limit near zero incident energy, one would want

cross sections less than the C,BA result in this region• The

iso-orthogonalization correction gives a result that is less

than the CBA in this region.

100000.

I EV

O.O 30.0 60.0 90,O 1 20.O 150.0 180.O

FaNGLE (DEGDEES)

_-_-..\ __ __ - _____

\,,\ =T=,,:

i% //

_v, I. EV
l

_0.0 BO.O 90.0 120.0 150.(_ IBO,

FW'_GLE (DECi:_EES)

FIG. 14. Electron capture from H- into the ground state

of positronium using the "open-shell" wave function• The

solid line is the present calculation including the (post di-

rect) iso-orthogonalization (CDIOPS) (the open circles are

the same result using L6wdin's wave function (LDIOPS)),

the dashed lines are, in order of decreasing length, the post

direct-orthogonalization result (CDOPS), the prior direct-

orthogonalization result (CDOPR), the CCBAPR, and the
CCBAPS.
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TABLE I. Fock-Tani cross sections for reaction (3) in units of _ra_.11.

Energy (eV) FBA Post FT Prior FT

Average
without Symmetric

interference F-r Humberston

6.8

7.65

8.7

9.2

9.826

10.0

13.6

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0.032 0.00094 0.011 0.0061 0.0046

1.869 1.454 0.458 0.956 0.74

3.344 3.247 0.426 1.836 1.259

3.835 3.868 0.457 2.162 1.443

4.287 4.447 0.499 2.473 1.653

4.385 4.573 0.511 2.542 1.709

4.788 5.187 0.979 3.083 2.541

3.349 _.631 1.352 2.491 2.278

1.651 1.773 1.078 1.425 1.359

0.848 0.902 0.681 0.791 0.761

0.465 0.489 0.417 0.453 0.436

0.269 0,281 0.260 0.271 0.260

........ 0.iGt ..... 0.170 0.166 0.168 0.162

0.104 0.107 0.110 0.108 0.104

0.068 0.070 0.074 0.072 0.069

0.046 0.047 0.052 0.049 0.047

0.0032

0.7

1.3

1.67

TABLE II. Total cross sections for electron capture from H- into the ground state of positronium, in units of _ra_.

E (eV) LCBAPR LCBAPS CCBAPR C CBAPS CDOPR CDOPS LDIOPS CDIOPS

.1 .167(4) .237(4) .201(4) .170(4) .304(5) .458(4) .904(3) .947(3)

.5 .634(3) .456(3) .384(3) .327(3) .576(4) .865(3) .321(3) .178(3)

1. .303(3) .217(3) .181(3) .155(3) ,269(4) .402(3) .149(3) .825(2)

100. .232(-1) .151(-1) .112(-1) .986(-2) .791(-1)

12T2 zy : 72 _ : :2 _ _22 ......
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VIII. CONCLUSION

Cross sections for positronium formation by electron

capture from the negative hydrogen ion have been calcu-

lated in the energy region below the 6.8 eV threshold for

capture from hydrogen. The lowest order Born approxi-

mation has been augmented by orthogonalization correc-

tions. The present treatment has utilized the perspective

of treating the atomic nuclei (of like charge and vastly

different mass) as if they were isospin projections of a

single species of "nucleon," and has examined the con-

sequences of this perspective. In capture fronI hydrogen

this iso-orthogonalized Fock-Tani result yielded excellent

agreement with tile variational result. To date there is no

variational result for capture front H-, due difficult inte-

grals involving Coulomb waves, but tile iso-orthogonalized

result show promise of yielding a reliable result.
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